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ABSTRACT

This paper presents a novel framework that improves both vocal fun-

damental frequency (F0) estimation and singing voice separation by

making effective use of the mutual dependency of those two tasks. A

typical approach to singing voice separation is to estimate the vocal

F0 contour from a target music signal and then extract the singing

voice by using a time-frequency mask that passes only the harmonic

components of the vocal F0s and overtones. Vocal F0 estimation,

on the contrary, is considered to become easier if only the singing

voice can be extracted accurately from the target signal. Such mu-

tual dependency has scarcely been focused on in most conventional

studies. To overcome this limitation, our framework alternates those

two tasks while using the results of each in the other. More specif-

ically, we first extract the singing voice by using robust principal

component analysis (RPCA). The F0 contour is then estimated from

the separated singing voice by finding the optimal path over a F0-

saliency spectrogram based on subharmonic summation (SHS). This

enables us to improve singing voice separation by combining a time-

frequency mask based on RPCA with a mask based on harmonic

structures. Experimental results obtained when we used the pro-

posed technique to directly edit vocal F0s in popular-music audio

signals showed that it significantly improved both vocal F0 estima-

tion and singing voice separation.

Index Terms— Vocal F0 estimation, singing voice separation,

melody extraction, robust principal component analysis (RPCA),

subharmonic summation (SHS).

1. INTRODUCTION

Active music listening [1] has recently been considered one of the

most attractive directions in music signal processing research. While

listening to music, we often wish that a particular instrument part

were performed in a different way. Such a music touch-up is gen-

erally infeasible for commercial CD recordings unless individual in-

strument tracks are available, but the state-of-the-art techniques of

music signal processing enable us to actively make small changes

to existing CD recordings with or without using score information.

Drum parts, e.g., can be edited in MIDI sequencers [2], and the vol-

ume balance between multiple instruments can be adjusted [3, 4].

Since the sung melody is an important factor affecting the mood

of popular music, several methods have been proposed for analyzing

and editing the three major kinds of acoustic characteristics of the

singing voice: pitch, timbre, and volume. Ohishi et al. [5], for ex-

ample, proposed a method that represents the temporal dynamics of

a vocal F0 contour by using a probabilistic model and transfers those

dynamics to another contour. A similar model was applied to a vol-

ume contour of the sung melody. Note that those methods can deal

This study was partially supported by JSPS KAKENHI 26700020,
24220006, 24700168 and CREST OngaCREST project.
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Fig. 1. Overview of proposed framework

only with isolated singing voices. Fujihara and Goto [6], however,

proposed a method that can be used to directly modify the spectral

envelopes (timbres) of the sung melody in a polyphonic music audio

signal without affecting accompanying instrument parts.

To develop a system that enables users to edit the acoustic char-

acteristics of the sung melody included in a polyphonic mixture, we

need to perform accurate vocal F0 estimation and singing voice sep-

aration. Although these two tasks are intrinsically linked with each

other, only the one-way dependency between them has convention-

ally been considered. A typical approach to vocal F0 estimation is

to identify a series of predominant harmonic structures from a music

spectrogram [7–9]. Salamon and Gómez [10] focused on the charac-

teristics of vocal F0 contours to distinguish which contours derived

from vocal sounds. To improve vocal F0 estimation, some studies

used singing voice separation techniques [11–13]. This approach

is effective especially when the volume of the sung melody is rel-

atively low [14]. A typical approach to singing voice separation is

to use a time-frequency mask that passes only the harmonic compo-

nents of vocal F0s and overtones [15–17]. Several methods do not

use vocal F0 information but instead, focus on the repeating nature

of accompanying sounds [13,18] or the spectral characteristics of the

sung melody [11, 19]. Durrieu et al. [20] used source-filter NMF for

directly modeling the F0s and timbres of singing voices and accom-

paniment sounds and separating each type of sounds.



In this paper we propose a novel framework that improves both

vocal F0 estimation and singing voice separation by making effec-

tive use of the mutual dependency of those two tasks. The proposed

method of singing voice analysis is similar in spirit to a combina-

tion of singing voice separation and vocal F0 estimation proposed

in [21] and in [22]. A key difference is that our method uses robust

principal component analysis (RPCA), which is considered to be the

state-of-the-art for singing voice separation [18]. As shown in Fig. 1,

RPCA is used to extract the singing voice, and then the F0 contour is

estimated from the singing voice by finding the optimal path over a

F0-saliency spectrogram based on subharmonic summation (SHS).

This enables us to improve singing voice separation by combining

a time-frequency mask based on RPCA with a mask based on har-

monic structures. We use the proposed technique to directly edit

vocal F0s in popular-music audio signals.

2. PROPOSED FRAMEWORK

In this section, we explain our proposed framework of mutually de-

pendent vocal F0 estimation and singing voice separation for poly-

phonic music audio signals. One of our goals is to estimate the vocal

F0 at each frame of a target music audio signal. Another is to sepa-

rate the sung melody from the target signal. Since many promising

methods of vocal activity detection (VAD) have already been pro-

posed [10, 23, 24], we do not deal with VAD in this paper.

2.1. Singing voice separation

One of the most promising methods for singing voice separation is to

focus on the repeating nature of accompanying sounds [13, 18]. The

difference between vocal and accompanying sounds is well charac-

terized in the time-frequency domain. Since the timbres of harmonic

instruments, such as pianos and guitars, are consistent for each pitch

and the pitches are basically discretized at a semitone level, har-

monic spectra having the same shape appear repeatedly in the same

musical piece. The spectra of unpitched instruments (e.g., drums)

also tend to appear repeatedly. Vocal spectra, in contrast, rarely have

the same shape because the timbres and pitches of vocal sounds vary

significantly and continuously over time.

In our framework we use robust principal component analysis

(RPCA) to separate non-repeating components, as vocal sounds,

from a polyphonic spectrogram [18] (see Fig. 2). We decompose an

input matrix (spectrogram) M into a low-rank matrix L and a sparse

matrix S by solving the following convex optimization problem:

minimize ∥L∥∗ + λ∥S∥1 (subject to L+ S = M), (1)

where ∥ · ∥∗ and ∥ · ∥1 represent the nuclear norm and the L1-norm,

respectively. λ is a positive parameter that controls the balance be-

tween the low-rankness of L and the sparsity of S. To find the op-

timal L and S, we use an efficient inexact version of the augmented

Lagrange multiplier (ALM) algorithm [25].

When RPCA is applied to the spectrogram of a polyphonic mu-

sic signal, spectral components having repeating structures are al-

located to L and the other varying components are allocated to S.

We then make a time-frequency binary mask by comparing each el-

ement of L with the corresponding element of S. The sung melody

is extracted by applying the binary mask to the original spectrogram.

2.2. Vocal F0 estimation

We propose an efficient method that tries to find the optimal F0 path

over a saliency spectrogram indicating how likely the vocal F0 is to
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Fig. 2. Singing voice separation based on robust principal compo-

nent analysis (RPCA).

exist at each time-frequency bin by using the Viterbi algorithm [26].

We test three variants of saliency functions obtained by subharmonic

summation (SHS) [27], PreFEst [7], and MELODIA [10].

2.2.1. Salience functions

SHS [27] is a standard algorithm that underlies many vocal F0 esti-

mation methods [10, 28]. A salience function H(t, s) is formulated

on a logarithmic scale as follows:

H(t, s) =

N
∑

n=1

hnP (t, s+ 1200 log2 n), (2)

where t and s indicate a frame index and a logarithmic frequency

[cents], respectively, P (t, s) represents the power at frame t and fre-

quency s, N is the number of harmonic partials considered, and hn is

a decaying factor (0.86n−1 in this paper). The log-frequency power

spectrum P (t, s) is calculated from the short-time Fourier transform

(STFT) spectrum via spline interpolation. The frequency resolution

of P (t, s) is 200 bins per octave (6 cents per bin). Before com-

puting the salience function, we apply to the original spectrum the

A-weighting function1, which takes into account the non-linearity of

human auditory perception.

PreFEst [7] is a statistical multipitch analyzer that is considered

to be still competitive for vocal F0 estimation. It can be used for

computing a salience function. More specifically, an observed spec-

trum is approximated as a mixture of superimposed harmonic struc-

tures. Each harmonic structure is represented as a Gaussian mixture

model (GMM) in which each Gaussian corresponds to the energy

distribution of a harmonic partial. To learn model parameters, we

can use the expectation-maximization (EM) algorithm. The salience

function is then obtained as the mixing weights of those harmonic

structures. The postprocessing step called PreFEst-back-end, which

tracks the F0 contour in a multi-agent framework is not used in this

paper.

MELODIA [10] is the state-of-the-art method of vocal F0 es-

timation. It computes a salience function from the spectral peaks

of a target music signal after applying an equal-loudness filter.

The melody F0 candidates are then selected from the peaks of the

salience function and grouped based on time-frequency continuity.

Finally, the melody contour is selected from the candidate contours

by focusing on the characteristics of vocal F0s. The implementation

of MELODIA we use is provided as a vamp plug-in2.

1replaygain.hydrogenaud.ioproposalequal loudness.html
2mtg.upf.edu/technologies/melodia
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Fig. 3. Vocal F0 estimation based on subharmonic summation (SHS)

and Viterbi search

2.2.2. Viterbi search

Given a salience function as a time-frequency spectrogram, we esti-

mate the optimal melody contour Ŝ by solving an optimal path prob-

lem formulated as follows:

Ŝ = argmax
s1,...,sT

T−1
∑

t=1

{log atH(t, st) + log T (st, st+1)} , (3)

where T (st, st+1) is a transition probability that indicates how likely

the current F0 st is to move on to the next F0 st+1, and at is a

normalization factor that makes the salience values sum to 1 within a

range of F0 search. T (st, st+1) is given by the Laplace distribution,

L(st − st+1|0, 150), with a zero mean and a standard deviation of

150 cents. The time frame interval is 10 msec. Optimal Ŝ can be

effectively found by using the Viterbi search. Although MELODIA

has its own F0 tracking and melody selection algorithm, in this paper

we use the Viterbi search for a salience spectrogram obtained by

MELODIA in order to purely compare the three salience functions.

2.3. Singing voice separation based on vocal F0s

Assuming that vocal spectra preserve their original harmonic struc-

tures and the energy of those spectra is localized on harmonic partials

after singing voice separation based on RPCA, we make, in a way

similar that of [16], a binary mask Mh that passes only harmonic

partials of given vocal F0s:

Mh(t, f) =

{

1 if nFt −
w

2
< f < nFt +

w

2
,

0 otherwise,
(4)

where Ft is the vocal F0 estimated from frame t, n is the index of

a harmonic partial, and w is a frequency width for extracting the

energy around each harmonic partial.

We integrate the harmonic mask Mh with the binary mask Mr

obtained using the RPCA-based method described in Section 2.1.

Finally, a vocal spectrogram Pv and an accompanying spectrogram

Pa are given by

Pv(t, f) = Mb(t, f)Mh(t, f)P (t, f),

Pa(t, f) = P (t, f)− Pv(t, f), (5)

where P is the original spectrogram of a polyphonic music signal.

The separated vocal signals and accompanying signals are obtained

by calculating the inverse STFT of Pv and Pa.

3. APPLICATION TO SINGING VOICE EDITING

We use the proposed framework for manipulating vocal F0s included

in polyphonic music signals. Our system enables users to add several

types of vocal expressions such as vibrato and glissando, to an arbi-

trary musical note specified on the GUI interface without affecting
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Fig. 4. Example of vocal F0 editing for a piece of popular music

(RWC-MDB-P-2001 No.007). From the top to the bottom are shown

the original polyphonic spectrogram, the vocal expressions to be at-

tached, and the modified spectrogram.

the timbres of singing voices and accompanying instrument sounds.

Example audio files are available on our website.3

Here we briefly explain the architecture of the vocal F0 editing

system. A target music signal is first converted into a log-frequency

amplitude spectrogram by using constant-Q transform [29]. The F0

contour of the singing voice is estimated by using the method de-

scribed in Section 2.2, and the vocal spectrogram is then separated

from the mixture spectrogram by using the method described in Sec-

tion 2.3. A naive way of changing the F0 of each frame is to just shift

the vocal spectrum of each frame along the log frequency axis. That,

however, changes the vocal timbre. We therefore first estimate the

spectral envelope of the vocal spectrum and then preserve it by mod-

ifying the power of each harmonic partial. Finally, a modified mu-

sic signal is synthesized from the sum of the modified vocal spectra

and the separated accompanying spectra by using inverse constant-Q

transform [29] with a phase reconstruction method [30].

All these processes are done in the log-frequency domain. This

is the first system that applies RPCA to log-frequency spectrograms

obtained using a constant-Q transform instead of linear-frequency

spectrograms obtained using a short-time Fourier transform (STFT).

Figure 4 shows an example of vocal F0 editing, in which vocal ex-

pressions such as vibrato and tremolo are attached to the vocal F0

contour in a polyphonic music signal.

4. EVALUATION

This section describes our experiments evaluating the performances

of the proposed singing voice separation and vocal F0 estimation.

4.1. Experimental conditions

The “MIR-1K” dataset4 and the “RWC Music Database: Popular

Music” (RWC-MDB-P-2001) [31] were used in this evaluation. The

former contains 110 song clips of 20-110 sec (16 kHz); the latter

contains 100 song clips of 125-365 sec (44.1 kHz). The clips of

the MIR-1K dataset were with a signal-to-accompaniment ratio of 0

3winnie.kuis.kyoto-u.ac.jp/members/ikemiya/demo/icassp2015/
4sites.google.com/site/unvoicedsoundseparation/mir-1k



Table 1. Parameter settings.

window size interval N k w

MIR-1K 2048 160 10 1.0 80
RWC 4096 441 20 1.0 100

Table 2. Experimental results of vocal F0 estimation. The average

accuracy [%] over all clips in each dataset are shown.

MIR-1K (signal-to-accompaniment ratio 0 dB)

Vocal sep. SHS-V PreFEst-V MELODIA-V MELODIA

None 66.96 50.79 76.88 78.09

RPCA 74.49 56.68 80.59 79.43

RWC-MDB-P-2001

Vocal sep. SHS-V PreFEst-V MELODIA-V MELODIA

None 71.50 70.07 67.79 69.97

RPCA 77.41 71.01 72.26 69.43

[dB]. The both datasets were used for vocal F0 estimation and only

the MIR-1K was used for singing voice separation. The parameters

of the STFT (window size and shifting interval [samples]), SHS (the

number N of harmonic partials), RPCA (k described in [18]) and

the harmonic mask (w [Hz]) are listed in Table 1. The range of the

vocal F0 search was set to 80-720 Hz.

4.2. Experimental results of vocal F0 estimation

We tested the following four methods of vocal F0 estimation.

SHS-V: A-weighting function + SHS + Viterbi

PreFEst-V: PreFEst (salience function) + Viterbi

MELODIA-V: MELODIA (salience function) + Viterbi

MELODIA: The original MELODIA algorithm

The raw pitch accuracy (RPA) obtained with and without singing

voice separation based on RPCA was measured for each method.

The RPA was defined as the ratio of the number of frames in which

correct vocal F0s were detected to the total number of voiced frames,

and a correct F0 was defined as a detected F0 within 50 cents (i.e.,

half semitone) of the actual F0. The performance of vocal activity

detection (VAD) was not measured in this study.

As seen in Table 2, the experimental results showed that the pro-

posed method SHS-V performed well with both datasets. We found

that singing voice separation was a great help, especially with SHS-

V that is a simple SHS-based method. PreFEst-V did not work well

with the MIR-1K dataset because many clips in that dataset con-

tained melodic instrumental sounds with salient harmonic structure

(e.g., a piano and strings along with a singing voice).

4.3. Experimental results of singing voice separation

We tested the following four methods of singing voice separation.

RPCA: Using only RPCA mask [18]

RPCA-F0: Using RPCA mask + harmonic mask (proposed)

RPCA-F0-GT: Using RPCA mask + harmonic mask (made by

using ground-truth F0s)

IDEAL: Using ideal binary mask (upper bound)

In this experiment we used the SHS-V method for vocal F0 esti-

mation because its overall performance was better than that of the
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Fig. 5. Experimental results of singing voice separation for the MIR-

1K dataset: Source separation quality for singing voices (top) and

accompanying sounds (bottom)

other methods. The BSS-EVAL toolkit [32] was used for evalu-

ating the quality of separated audio signals in terms of source-to-

interference ratio (SIR), sources-to-artifacts ratio (SAR), and source-

to-distortion ratio (SDR) by comparing separated vocal sounds with

ground-truth isolated vocal sounds. Normalized SDR (NSDR) [18]

was also calculated for evaluating the improvement of the SDR from

that of the original music signals. The final scores, GSIR, GSAR,

GSDR and GNSDR were obtained by taking the averages over all

110 clips of MIR-1K, weighted by their lengths. Since this pa-

per does not deal with VAD and intended to examine the effect of

harmonics mask for singing voice separation, we used only voiced

frames for evaluation, i.e., the amplitudes of separated signals in un-

voiced frames were set to 0 when computing the evaluation scores.

The experimental results showed that, by all measures except

GSAR, the proposed RPCA-F0 method worked better than the

RPCA (Fig. 5). Although vocal F0 estimation often failed, re-

moving the spectral components of non-repeating instruments (e.g.,

a bass guitar) significantly improved the separation of both vocal

and accompanying signals. The proposed method outperformed the

state-of-the-art methods in the Music Information Retrieval Evalua-

tion eXchange (MIREX 2014)5.

5. CONCLUSION

This paper proposed a novel framework for improving both vocal F0

estimation and singing voice separation by making effective use of

the mutual dependency of those tasks. In the first step, we perform

blind singing voice separation without assuming singing voices to

have harmonic structures by using robust principal component anal-

ysis (RPCA). In the second step, we detect the vocal contour in

the separated vocal spectrogram by using a simple saliency-based

method called subharmonic summation. In the last step, we accu-

rately extract the singing voice by making a binary mask based on

vocal harmonic structures and the RPCA results. These techniques

enable users to freely edit vocal F0s in music signals in existing CD

recordings for active music listening. In the future we plan to inte-

grate both tasks into a unified probabilistic model jointly optimizing

their results in a principled manner.

5www.music-ir.org/mirex/wiki/2014:Singing Voice Separation Results
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